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1 Block Coordinate Descent

1.1 Motivation

Let us recall the SGD and FedAvg. They all consider a big data setting. For example, the ERM problem
(finite-summation optimization):

min
x

1

m

m∑
i=1

f(x; zi).

Using GD,

xt+1 = xt − st
m

m∑
i=1

∇f(xt, zi).

The summation is huge due to the big data setting. The basic idea is the “sample decomposition”. SGD and
FedAvg are the two typical examples.

Another type problem is sightly different, which involves many decision variables called “high-dimensional
problems”.

Example 1 For the least squares problem,

x∗ ∈ argmin
x

1

2
∥Ax− b∥2,

where x∗ = (A⊤A)−1A⊤b. Computing (A⊤A)−1, we need O(n3) which is determined by the number of
decision. variables. If n >> m, then A⊤A is not invertible, the we have to use GD,

xt+1 = (I − stA
⊤A)xt + stA

⊤b.

However, computing A⊤A needs O(n2m) computations and O(n2) storage which is prohibited for large n.

Example 2 Let us consider LASSO problem again.

min
x

1

2
∥Ax− b∥2 + λ∥x∥1 =

1

2
∥Ax− b∥2 +

n∑
j=1

|xj |.

In this model, maybe n is so large.

General Formulation:

min
x

f(x) = f(x1,x2, . . . ,xK) +

K∑
k=1

rk(xk), (1)

where xk ∈ Rnk and
∑

k nk = n which means the decision variables are decomposed into K groups. If
K = n, then xk ∈ R. In this part, we assume that f ∈ C1 and rk, k ∈ [K] are convex.
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1.1.1 BCD

Suppose that we have an iterative algorithm to obtain xt, then define that

f t
k(xk) := f(xt+1

1 ,xt+1
2 , . . . ,xt+1

k−1,xk,x
t
k+1, . . . ,x

t
K) = f(xt+1

<k ,xk,x
t
>k). (2)

Solve a sub-optimization problem of Eq.(1).

(i) xt+1
k = argminxk

{f t
k(xk) + rk(xk)}.

(ii) xt+1
k = argminxk

{f t
k(xk) +

1
2∥xk − xt

k∥2 + rk(xk)}.

(iii) xt+1
k = argminxk

{ 12∥xk − xt
k∥2 + ⟨∇f t

k(xk),xk − xt
k⟩+ rk(xk)}.

Using item 1
2∥xk − xt

k∥2 is to control the xt+1 is not far away from xt
k in a certain sense.

Example 3 Let us consider the problem

min f(x, y) = x2 − 2xy + 10y2 − 4x− 20y.

If we fix y, then ∇xf(x, y) = 2x−2y−4 = 0, that is x=y+2. If we fix x, then ∇yf(x, y) = 20y−2x−20 = 0,
that is y = x/10 + 1. {

xt+1 = yt + 2,

yt+1 = x(t+1)/10 + 1.

Algorithm 1 Block Coordinate Descent

1: Input: Given a initial starting point x0 = (x0
1, . . . ,x

0
K) ∈ Rn, and t = 0

2: for t = 0, 1, . . . , T do
3: for k = 1, . . . ,K do
4: Do (i) or (ii) or (iii) for Eq.(1).
5: end for
6: end for
7: Output: xT .

Remark 1 • This algorithm is called “Block Coordinate Descent”. If K = n, it also called “Coordinate
Descent”.

• This algorithm does not always convert to the optimal solution (see Page 393 of textbook).

• The related convergence theory can be found in two review papers [?, ?].

Example 4 (Group LASSO)

Suppose that x = (x1, . . . , xn)
⊤ ∈ Rn = (z1, . . . , zK)⊤ and zk ∈ Rnk ,

∑K
k=1 nk = n,A = [A1, A2, . . . , AK ] ∈

Rm×n. Then Group LASSO is

min
x

1

2
∥Ax− b∥2 + λ

K∑
k=1

∥zk∥2,

where ∥zk∥2 =
√∑nk

l=1 z
2
kl. This is equivalent to

min
x

1

2
∥b−

K∑
k=1

Akzk∥2 + λ

K∑
k=1

∥zk∥2. (3)
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BCD algorithm: Given zt2, . . . , z
t
K , then let bt = b−

∑K
k=2 Akz

t
k. Then Eq.(3) is equivalent to

min
z1

1

2
∥bt −A1z1∥2 + λ∥z1∥2.

If z1 ̸= 0, then −A⊤
1 (b

t −A1z1) + λ z1

∥z1∥2
= 0, so,

z1 = (A⊤
1 A1 +

λI

∥z1∥2
)−1A⊤

1 b
t.

The iterative step is
zt+1
1 ← (A⊤

1 A1 +
λI

∥zt1∥2
)−1A⊤

1 b
t.

If z1 = 0, then 0 ∈ ∂( 12∥b
t −A1z1∥2 + λ∥z1∥2) = −A⊤

1 b
t + λs, where s ∈ ∂∥0∥2 = {s|∥s∥2 ≤ 1}.

Thus, ∥A⊤
1 b

t∥ ≤ λ. Final update is

zt+1
1 ←

{
0, if ∥A⊤

1 b
t∥ ≤ λ,

(A⊤
1 A1 +

λI
∥zt

1∥2
)−1A⊤

1 b
t, otherwise.

Example 5 (K-means)

Suppose we have a data matrix Am×n = (a⊤1 , . . . ,a
⊤
m)⊤. We introduce a corresponding binary indicator

variable rik ∈ {0, 1}, i ∈ [m], k ∈ [K] to describe which of the k clusters the data point ai is assigned. If ai is
assigned to cluster k, then rik = 1, otherwise rik′ = 0, k′ ̸= k. Let µk be the mean vector of cluster k, then
the objective function of K-means is

min
µk,rik

m∑
i=1

K∑
k=1

rik∥ai − µk∥2 = ℓ(R,µ), (4)

where R ∈ Rm×K includes all the indicator variables and µ ∈ RK×n includes all µk.

K-means Algorithm:

• Fix rik, ∇µk
ℓ(R,µ) = −2

∑m
i=1 rik(ai − µk) = 0, that is

µk =

∑m
i=1 rikai∑m
i=1 rik

.

• Fix µk then,

rik∗ =

{
1, if k∗ = arg min

1≤k≤K
∥ai − µk∥2,

0, otherwise.

We further denote µ = (µ⊤
1 , µ

⊤
2 , . . . , µ

⊤
K)⊤ ∈ RK×n and R = (r⊤1 , . . . , r

⊤
m)⊤ ∈ Rm×K , then the objective

function of K-means can be reformulated as:

min
R,µ
∥A−Rµ∥2F .

The K-means algorithm first fixes R to solve µ, then fixes µ to solve R respectively.

Furthermore, K-means can be considered as a “matrix decomposition” problem. Actually, we can find many
different matrix decomposition problems can be solved by the BCD algorithm.
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Example 6 Suppose we know M , then the following problem called “non-negative matrix decomposition” [1]:

min
X,Y

1

2
∥XY −M∥2F , (5)

s.t. X ⪰ 0, Y ⪰ 0. (6)

Let f(X,Y ) = 1
2∥XY −M∥2F , then

∂f

∂X
= (XY −M)Y ⊤,

∂f

∂Y
= X⊤(XY −M).

Then the BCD algorithm is

Xt+1 = max{Xt − sXt (XtY t −M)(Y t)⊤, 0}, (7)
Y t+1 = max{Y t − sYt (X

t+1)⊤(Xt+1Y t −M), 0}. (8)
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